Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Biomedicines ; 12(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38540210

RESUMEN

Acute myeloid leukemia (AML) is an aggressive malignant disease with a high relapse rate due to the persistence of chemoresistant cells. To some extent, these residual cells can be traced by sensitive flow cytometry and molecular methods resulting in the establishment of measurable residual disease (MRD). The detection of MRD after therapy represents a significant prognostic factor for predicting patients' individual risk of relapse. However, due to the heterogeneity of the disease, a single sensitive method for MRD detection applicable to all AML patients is lacking. This review will highlight the advantages and limitations of the currently available detection methods-PCR, multiparameter flow cytometry, and next generation sequencing-and will discuss emerging clinical implications of MRD test results in tailoring treatment of AML patients.

2.
Lancet Haematol ; 10(12): e994-e1005, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37898151

RESUMEN

The recent application of whole exome or whole genome sequencing unveiled a plethora of germline variants predisposing to myeloid disorders, particularly myelodysplastic neoplasms. The presence of such variants in patients with myelodysplastic syndromes has important clinical repercussions for haematopoietic stem-cell transplantation, from donor selection and conditioning regimen to graft-versus-host disease prophylaxis and genetic counselling for relatives. No international guidelines exist to harmonise management approaches to this particular clinical scenario. Moreover, the application of germline testing, and how this informs clinical decisions, differs according to the expertise of individual clinical practices and according to different countries, health-care systems, and legislations. Leveraging the global span of the European Society for Blood and Marrow Transplantation (EBMT) network, we took a snapshot of the current European situation on these matters by disseminating an electronic survey to EBMT centres experienced in myelodysplastic syndromes transplantation. An international group of haematologists, transplantation physicians, paediatricians, nurses, and experts in molecular biology and constitutional genetics with experience in myelodysplastic syndromes contributed to this Position Paper. The panel met during multiple online meetings to discuss the results of the EBMT survey and to establish suggested harmonised guidelines for such clinical situations, which are presented here.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Síndromes Mielodisplásicos , Neoplasias , Humanos , Trasplante Homólogo , Trasplante de Células Madre Hematopoyéticas/métodos , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/terapia , Encuestas y Cuestionarios , Acondicionamiento Pretrasplante/métodos , Susceptibilidad a Enfermedades , Enfermedad Injerto contra Huésped/prevención & control
4.
Am J Hematol ; 98(11): 1685-1698, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37548390

RESUMEN

The current gold standard of response assessment in patients with myelodysplastic syndromes (MDS), chronic myelomonocytic leukemia (CMML), and acute myeloid leukemia (AML) is morphologic complete remission (CR) and CR with incomplete count recovery (CRi), both of which require an invasive BM evaluation. Outside of clinical trials, BM evaluations are only performed in ~50% of patients during follow-up, pinpointing a clinical need for response endpoints that do not necessitate BM assessments. We define and validate a new response type termed "peripheral blood complete remission" (PB-CR) that can be determined from the differential blood count and clinical parameters without necessitating a BM assessment. We compared the predictive value of PB-CR with morphologic CR/CRi in 1441 non-selected, consecutive patients diagnosed with MDS (n = 522; 36.2%), CMML (n = 132; 9.2%), or AML (n = 787; 54.6%), included within the Austrian Myeloid Registry (aMYELOIDr; NCT04438889). Time-to-event analyses were adjusted for 17 covariates remaining in the final Cox proportional hazards (CPH) model. DeepSurv, a CPH neural network model, and permutation-based feature importance were used to validate results. 1441 patients were included. Adjusted median overall survival for patients achieving PB-CR was 22.8 months (95%CI 18.9-26.2) versus 10.4 months (95%CI 9.7-11.2) for those who did not; HR = 0.366 (95%CI 0.303-0.441; p < .0001). Among patients achieving CR, those additionally achieving PB-CR had a median adjusted OS of 32.6 months (95%CI 26.2-49.2) versus 21.7 months (95%CI 16.9-27.7; HR = 0.400 [95%CI 0.190-0.844; p = .0161]) for those who did not. Our deep neural network analysis-based findings from a large, prospective cohort study indicate that BM evaluations solely for the purpose of identifying CR/CRi can be omitted.

5.
Leukemia ; 37(4): 843-853, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36813992

RESUMEN

Calreticulin (CALR) mutations present the main oncogenic drivers in JAK2 wildtype (WT) myeloproliferative neoplasms (MPN), including essential thrombocythemia and myelofibrosis, where mutant (MUT) CALR is increasingly recognized as a suitable mutation-specific drug target. However, our current understanding of its mechanism-of-action is derived from mouse models or immortalized cell lines, where cross-species differences, ectopic over-expression and lack of disease penetrance are hampering translational research. Here, we describe the first human gene-engineered model of CALR MUT MPN using a CRISPR/Cas9 and adeno-associated viral vector-mediated knock-in strategy in primary human hematopoietic stem and progenitor cells (HSPCs) to establish a reproducible and trackable phenotype in vitro and in xenografted mice. Our humanized model recapitulates many disease hallmarks: thrombopoietin-independent megakaryopoiesis, myeloid-lineage skewing, splenomegaly, bone marrow fibrosis, and expansion of megakaryocyte-primed CD41+ progenitors. Strikingly, introduction of CALR mutations enforced early reprogramming of human HSPCs and the induction of an endoplasmic reticulum stress response. The observed compensatory upregulation of chaperones revealed novel mutation-specific vulnerabilities with preferential sensitivity of CALR mutant cells to inhibition of the BiP chaperone and the proteasome. Overall, our humanized model improves purely murine models and provides a readily usable basis for testing of novel therapeutic strategies in a human setting.


Asunto(s)
Trastornos Mieloproliferativos , Mielofibrosis Primaria , Humanos , Animales , Ratones , Calreticulina/genética , Calreticulina/metabolismo , Janus Quinasa 2/genética , Trastornos Mieloproliferativos/genética , Mutación , Células Madre Hematopoyéticas/metabolismo , Mielofibrosis Primaria/genética , Mielofibrosis Primaria/metabolismo
7.
Cancers (Basel) ; 14(10)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35626063

RESUMEN

Background: Azacitidine is the treatment backbone for patients with acute myeloid leukemia, myelodysplastic syndromes and chronic myelomonocytic leukemia who are considered unfit for intensive chemotherapy. Detailed reports on adverse events in a real-world setting are lacking. Aims: To analyze the frequency of adverse events in the Austrian Registry of Hypomethylating agents. To compare real-world data with that of published randomized clinical trials. Results: A total of 1406 patients uniformly treated with a total of 13,780 cycles of azacitidine were analyzed. Hematologic adverse events were the most common adverse events (grade 3-4 anemia 43.4%, grade 3-4 thrombopenia 36.8%, grade 3-4 neutropenia 36.1%). Grade 3-4 anemia was significantly more common in the Registry compared to published trials. Febrile neutropenia occurred in 33.4% of patients and was also more common in the Registry than in published reports. Other commonly reported adverse events included fatigue (33.4%), pain (29.2%), pyrexia (23.5%), and injection site reactions (23.2%). Treatment termination due to an adverse event was rare (5.1%). Conclusion: The safety profile of azacitidine in clinical trials is reproducible in a real-world setting. With the use of prophylactic and concomitant medications, adverse events can be mitigated and azacitidine can be safely administered to almost all patients with few treatment discontinuations.

8.
Eur J Haematol ; 109(1): 50-57, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35299281

RESUMEN

BACKGROUND: A multistep pathogenesis of myeloid leukemia including mutations in epigenetic, spliceosome, and signaling genes has been recently demonstrated in a preclinical model but is poorly validated in patients. METHODS: Clinical, phenotypic, and biologic features were compared between three distinct molecularly defined CMML cohorts including TET2 monomutated patients (T, n = 10), TET2/SRSF2 bimutated patients (TS, n = 19), and patients who had NRAS mutations in addition to TET2/SRSF2 comutations (TSN, n = 14). RESULTS: Median survival was 90, 45, and 9 months, respectively (p = .001). Whereas no patient in the T and TS group transformed into acute myeloid leukemia (AML), 6/14 patients in the TSN group had AML at study entry or transformed during follow-up. Leukocyte counts, blast cell counts, and LDH levels were significantly higher in TSN vs. TS and T, respectively, whereas hemoglobin and platelet values were not significantly different. Increased growth factor-independent myeloid colony formation was restricted to TSN but not found in T and TS, respectively. The proportion of patients showing in vitro myelomonocytic skewing in T, TS, and TSN was 0%, 56%, and 100%, respectively (p = .010). CONCLUSION: Our results demonstrate that the model of multistep pathogenesis in CMML can be recapitulated in patients regarding clinical, phenotypic, and biologic features.


Asunto(s)
Productos Biológicos , Leucemia Mieloide Aguda , Leucemia Mielomonocítica Crónica , Humanos , Leucemia Mielomonocítica Crónica/diagnóstico , Leucemia Mielomonocítica Crónica/genética , Mutación , Pronóstico
10.
Ann Hematol ; 101(4): 837-846, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35083527

RESUMEN

TP53 aberrations are found in approximately 10% of patients with acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) and are considered early driver events affecting leukemia stem cells. In this study, we compared features of a total of 84 patients with these disorders seen at a tertiary cancer center. Clinical and cytogenetic characteristics as well as immunophenotypes of immature blast cells were similar between AML and MDS patients. Median overall survival (OS) was 226 days (95% confidence interval [CI], 131-300) for the entire cohort with an estimated 3-year OS rate of 11% (95% CI, 6-22). OS showed a significant difference between MDS (median, 345 days; 95% CI, 235-590) and AML patients (median, 91 days; 95% CI, 64-226) which is likely due to a different co-mutational pattern as revealed by next-generation sequencing. Transformation of TP53 aberrant MDS occurred in 60.5% of cases and substantially reduced their survival probability. Cox regression analysis revealed treatment class and TP53 variant allele frequency as prognostically relevant parameters but not the TP53-specific prognostic scores EAp53 and RFS. These data emphasize similarities between TP53 aberrant AML and MDS and support previous notions that they should be classified and treated as a distinct disorder.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Citogenética , Humanos , Inmunofenotipificación , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Mutación , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética , Proteína p53 Supresora de Tumor/genética
12.
Eur J Haematol ; 107(2): 265-274, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33998054

RESUMEN

In older patients with chronic myelomonocytic leukaemia (CMML) and limited life expectancy due to age and or comorbidities, it is particularly important to consider the risk of transformation for individualised treatment decisions. There is limited information on potential differences between younger and older CMML patients regarding the cumulative risk of transformation as well as haematological, molecular and biologic characteristics. We analysed data from the Austrian Biodatabase for CMML (ABCMML) to compare these parameters in 518 CMML patients. Categorisation of patients into 3 age-related groups: <60 years, 60-79 years and ≥80 years, showed a significantly lower risk of transformation at higher age by competing risk analysis, with a 4-year risk of 39%, 23% and 13%, respectively (P < .0001). The lower probability of transformation was associated with a lower percentage of blast cells in the peripheral blood (PB) of older patients. Furthermore, we provide a simple score based on age, PB blasts and platelet counts that allowed us to define subgroups of CMML patients with a different cumulative transformation risk, including a low-risk group with a transformation risk of only 5%. Our findings may facilitate reasonable treatment decisions in elderly patients with CMML.


Asunto(s)
Evaluación del Impacto en la Salud , Leucemia Mielomonocítica Crónica/epidemiología , Leucemia Mielomonocítica Crónica/patología , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor , Comorbilidad , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Femenino , Humanos , Leucemia Mielomonocítica Crónica/etiología , Leucemia Mielomonocítica Crónica/mortalidad , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Pronóstico
13.
Cell Rep ; 35(4): 109049, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33910004

RESUMEN

Transforming growth factor ß (TGF-ß) family ligands are key regulators of dendritic cell (DC) differentiation and activation. Epidermal Langerhans cells (LCs) require TGF-ß family signaling for their differentiation, and canonical TGF-ß1 signaling secures a non-activated LC state. LCs reportedly control skin inflammation and are replenished from peripheral blood monocytes, which also give rise to pro-inflammatory monocyte-derived DCs (moDCs). By studying mechanisms in inflammation, we previously screened LCs versus moDCs for differentially expressed microRNAs (miRNAs). This revealed that miR-424/503 is the most strongly inversely regulated (moDCs > LCs). We here demonstrate that miR-424/503 is induced during moDC differentiation and promotes moDC differentiation in human and mouse. Inversely, forced repression of miR-424 during moDC differentiation facilitates TGF-ß1-dependent LC differentiation. Mechanistically, miR-424/503 deficiency in monocyte/DC precursors leads to the induction of TGF-ß1 response genes critical for LC differentiation. Therefore, the miR-424/503 gene cluster plays a decisive role in anti-inflammatory LC versus pro-inflammatory moDC differentiation from monocytes.


Asunto(s)
Antiinflamatorios/uso terapéutico , Células de Langerhans/inmunología , MicroARNs/metabolismo , Familia de Multigenes/genética , Factor de Crecimiento Transformador beta/metabolismo , Animales , Antiinflamatorios/farmacología , Diferenciación Celular , Humanos , Ratones , Transducción de Señal
15.
Leuk Lymphoma ; 62(6): 1432-1440, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33399480

RESUMEN

We performed a registry-based analysis of 311 AML patients treated with decitabine in a standard of care setting to assess response and survival data with a distinct focus on the impact of the TP53 mutation status. Median age was 73 years. 172 patients received decitabine first-line and 139 in r/r disease. The ORR (whole cohort) was 30% with a median overall survival of 4.7 months. First-line patients achieved better responses than r/r-patients (ORR: 38% vs. 21%) resulting in a median OS of 5.8 months vs. 3.9 months. NGS based mutation analysis was performed in 180 patients. 20 patients (11%) harbored a TP53 mutation. Response rates and survival did not differ significantly between TP53 mutated patients and wild-type patients. This analysis of a large cohort of AML patients provides response rates and OS data after decitabine treatment. Interestingly, outcome was not negatively influenced by a TP53 mutation.


Asunto(s)
Leucemia Mieloide Aguda , Anciano , Análisis Mutacional de ADN , Decitabina/uso terapéutico , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Mutación , Sistema de Registros , Resultado del Tratamiento , Proteína p53 Supresora de Tumor/genética
16.
Clin Epigenetics ; 13(1): 1, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407852

RESUMEN

BACKGROUND: Chronic myelomonocytic leukemia (CMML) is an aggressive hematopoietic malignancy that arises from hematopoietic stem and progenitor cells (HSPCs). Patients with CMML are frequently treated with epigenetic therapeutic approaches, in particular the hypomethylating agents (HMAs), azacitidine (Aza) and decitabine (Dec). Although HMAs are believed to mediate their efficacy via re-expression of hypermethylated tumor suppressors, knowledge about relevant HMA targets is scarce. As silencing of tumor-suppressive micro-RNAs (miRs) by promoter hypermethylation is a crucial step in malignant transformation, we asked for a role of miRs in HMA efficacy in CMML. RESULTS: Initially, we performed genome-wide miR-expression profiling in a KrasG12D-induced CMML mouse model. Selected candidates with prominently decreased expression were validated by qPCR in CMML mice and human CMML patients. These experiments revealed the consistent decrease in miR-125a, a miR with previously described tumor-suppressive function in myeloid neoplasias. Furthermore, we show that miR-125a downregulation is caused by hypermethylation of its upstream region and can be reversed by HMA treatment. By employing both lentiviral and CRISPR/Cas9-based miR-125a modification, we demonstrate that HMA-induced miR-125a upregulation indeed contributes to mediating the anti-leukemic effects of these drugs. These data were validated in a clinical context, as miR-125a expression increased after HMA treatment in CMML patients, a phenomenon that was particularly pronounced in cases showing clinical response to these drugs. CONCLUSIONS: Taken together, we report decreased expression of miR-125a in CMML and delineate its relevance as mediator of HMA efficacy within this neoplasia.


Asunto(s)
Antimetabolitos Antineoplásicos/uso terapéutico , Azacitidina/uso terapéutico , Metilación de ADN/efectos de los fármacos , Decitabina/uso terapéutico , Regulación de la Expresión Génica/efectos de los fármacos , Leucemia Mielomonocítica Crónica/tratamiento farmacológico , Leucemia Mielomonocítica Crónica/genética , ARN Mensajero , Animales , Modelos Animales de Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Ratones
17.
Int J Mol Sci ; 21(17)2020 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-32842710

RESUMEN

We have originally reported that colony-forming units granulocyte/macrophage (CFU-GM) formation is an in vitro feature of chronic myelomonocytic leukemia (CMML) and a strong predictor for short survival. Elucidation of the molecular basis underlying this in vitro phenomenon could be helpful to define molecular features that predict inferior outcome in patients. We studied the correlation between the mutational landscape and spontaneous colony formation in 164 samples from 125 CMML patients. As compared to wildtype samples, spontaneous in vitro CFU-GM formation was significantly increased in samples containing mutations in NRAS, CBL and EZH2 that were confirmed as independent stimulatory factors by multiple regression analysis. Inducible expression of mutated RAS but not JAK2 was able to induce growth factor independence of Ba/F3 cells. Whereas high colony CFU-GM growth was a strong unfavorable parameter for survival (p < 0.00001) and time to transformation (p = 0.01390), no single mutated gene had the power to significantly predict for both outcome parameters. A composite molecular parameter including NRAS/CBL/EZH2, however, was predictive for inferior survival (p = 0.00059) as well as for increased risk of transformation (p = 0.01429). In conclusion, we show that the composite molecular profile NRAS/CBL/EZH2 derived from its impact on spontaneous in vitro myeloid colony formation improves the predictive power over single molecular parameters in patients with CMML.


Asunto(s)
Leucemia Mielomonocítica Crónica/genética , Leucemia Mielomonocítica Crónica/mortalidad , Leucemia Mielomonocítica Crónica/patología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Línea Celular Tumoral , Proteína Potenciadora del Homólogo Zeste 2/genética , Femenino , GTP Fosfohidrolasas/genética , Regulación Leucémica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Janus Quinasa 2/genética , Masculino , Proteínas de la Membrana/genética , Ratones , Persona de Mediana Edad , Mutación , Pronóstico , Proteínas Proto-Oncogénicas c-cbl/genética , Ensayo de Tumor de Célula Madre , Proteínas ras/genética
18.
Clin Cancer Res ; 26(20): 5304-5309, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32816950

RESUMEN

The tumor suppressor p53 exerts pivotal roles in hematopoietic stem cell (HSC) homeostasis. Mutations of the TP53 gene have recently been described in individuals with clonal hematopoiesis conferring substantial risk of developing blood cancers. In patients with acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), TP53 aberrations-mutations, deletions, and a combination thereof-are encountered at a constant frequency of approximately 10%. These aberrations affect HSCs transforming them into preleukemic stem cells, pinpointing their central role in leukemogenesis. AML and MDS with TP53 aberrations are characterized by complex chromosomal aberrations. Respective patients experience a dismal long-term outcome following treatment with both intensive and nonintensive regimens including novel agents like venetoclax combinations or even allogeneic HSC transplantation. However, according to the 2016 WHO classification, AML and MDS with TP53 aberrations are still regarded as separate disease entities. On the basis of their common biological and clinical features, we propose to classify AML and MDS with TP53 aberrations as a single, distinct stem cell disorder with a unique genetic make-up, comparable with the WHO classification of "AML with recurrent genetic abnormalities." This approach will have implications for basic and translational research endeavors, aid in harmonization of current treatment strategies, and facilitate the development of master trials targeting a common deleterious driver event.


Asunto(s)
Aberraciones Cromosómicas , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicos/genética , Proteína p53 Supresora de Tumor/genética , Regulación Neoplásica de la Expresión Génica/genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Humanos , Leucemia Mieloide Aguda/clasificación , Leucemia Mieloide Aguda/patología , Mutación/genética , Síndromes Mielodisplásicos/clasificación , Síndromes Mielodisplásicos/patología
20.
Am J Hematol ; 95(10): 1148-1157, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32602117

RESUMEN

Persistent measurable residual disease (MRD) is an increasingly important prognostic marker in acute myeloid leukemia (AML). Currently, MRD is determined by multi-parameter flow cytometry (MFC) or PCR-based methods detecting leukemia-specific fusion transcripts and mutations. However, while MFC is highly operator-dependent and difficult to standardize, PCR-based methods are only available for a minority of AML patients. Here we describe a novel, highly sensitive and broadly applicable method for MRD detection by combining MFC-based leukemic cell enrichment using an optimized combinatorial antibody panel targeting CLL-1, TIM-3, CD123 and CD117, followed by mutational analysis of recurrently mutated genes in AML. In dilution experiments this method showed a sensitivity of 10-4 to 10-5 for residual disease detection. In prospectively collected remission samples this marker combination allowed for a median 67-fold cell enrichment with sufficient DNA quality for mutational analysis using next generation sequencing (NGS) or digital PCR in 39 out of 41 patients. Twenty-one samples (53.8%) tested MRD positive, whereas 18 (46.2%) were negative. With a median follow-up of 559 days, 71.4% of MRD positive (15/21) and 27.8% (5/18) of MRD negative patients relapsed (P = .007). The cumulative incidence of relapse (CIR) was higher for MRD positive patients (5-year CIR: 90.5% vs 28%, P < .001). In multivariate analysis, MRD positivity was a prominent factor for CIR. Thus, MFC-based leukemic cell enrichment using antibodies against CLL-1, TIM-3, CD123 and CD117 followed by mutational analysis allows high sensitive MRD detection and is informative on relapse risk in the majority of AML patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...